Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
نویسندگان
چکیده
The stability and evolution of ferroelectric domain structures in thin films are studied. Elastic solutions are derived for both elastically anisotropic and isotropic thin films with arbitrary domain structures, subject to the mixed stressfree and constraint boundary conditions. These solutions are employed in a three-dimensional phase-field model to investigate simultaneously the effect of substrate constraint and temperature on the volume fractions of domain variants, domain-wall orientations, surface topology, domain shapes, and their temporal evolution for a cubic-to-tetragonal ferroelectric phase transition. A specific example of a [001] orientated film heteroepitaxially grown on a [001] cubic substrate is considered. It is shown that the shapes of a-domains with tetragonal axes parallel to the film surface are significantly different from those of c-domains with tetragonal axes perpendicular to the film surface. For the substrate constraints and temperatures under which both aand c-domains coexist, both types of a-domains are present with their tetragonal axes perpendicular to each other, and the domain wall orientations deviate from the 45 orientation generally assumed in thermodynamic analyses. It is demonstrated that a substrate constraint results in sequential nucleation and growth of different tetragonal domains during a ferroelectric phase transition. 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
منابع مشابه
Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering
Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...
متن کاملAtomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films
The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...
متن کاملTunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films
We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...
متن کاملThe Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering
The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...
متن کاملEffect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate
ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...
متن کامل